Step by step sample solution of parametric derivative

Step by step solution returned by our online calculator is given below:

Parametric derivative calculator
Find the derivative of the parametrically defined function:
$$ \left\{ \begin{aligned} &x(t) = 1 + \sin(t) \\ &y(t) = 2 \cdot t - \cos(t) \end{aligned} \right.$$
\(t\) - parametric variable.


Input interpretation
Find the derivative \(\frac{\mathrm{d}y}{\mathrm{d}x}\) of parametrically defined function:
$$ \left\{ \begin{aligned} &x(t) = 1 + \sin(t) \\ &y(t) = 2 \cdot t - \cos(t) \end{aligned} \right.$$
Answer
\(\left(2+\sin\left(t\right)\right)\cdot\sec\left(t\right)\)

Step by step solution

Step 1
Formula for derivative calculation of parametrically defined function has the form:
\(\frac{\mathrm{d}y(x)}{\mathrm{d}x}=\frac{\frac{\mathrm{d}y(t)}{\mathrm{d}t}}{\frac{\mathrm{d}x(t)}{\mathrm{d}t}}\)
Step 2
First calculate the derivative \(\frac{\mathrm{d}y(t)}{\mathrm{d}t}\):
\(\frac{\mathrm{d}}{\mathrm{d}t}\left(2\cdot t-\cos(t)\right)\)
Step 3
Differentiate the sum term by term:
\(\frac{\mathrm{d}}{\mathrm{d}t}\left(2\cdot t\right)+\frac{\mathrm{d}}{\mathrm{d}t}\left(-\cos(t)\right)\)
Step 4
Factor out constants:
\(2\cdot\frac{\mathrm{d}t}{\mathrm{d}t}+\frac{\mathrm{d}}{\mathrm{d}t}\left(-\cos(t)\right)\)
Step 5
The derivative of \(t\) by \(t\) equals to \(1\):
\(2+\frac{\mathrm{d}}{\mathrm{d}t}\left(-\cos(t)\right)\)
Step 6
Factor out constants:
\(2-\frac{\mathrm{d}}{\mathrm{d}t}\left(\cos(t)\right)\)
Step 7
By using derivative identities \(\left(\frac{\mathrm{d}}{\mathrm{d}t}\left(\cos(t)\right)=-\sin(t)\right)\), we get:
\(2+\sin(t)\)
Step 8
So, we have:
\(\frac{\mathrm{d}y(t)}{\mathrm{d}t}=2+\sin(t)\)
Step 9
Now, calculate the derivative \(\frac{\mathrm{d}x(t)}{\mathrm{d}t}\):
\(\frac{\mathrm{d}}{\mathrm{d}t}(1+\sin(t))\)
Step 10
Differentiate the sum term by term:
\(\frac{\mathrm{d}1}{\mathrm{d}t}+\frac{\mathrm{d}\sin(t)}{\mathrm{d}t}\)
Step 11
Derivative of constant expression equals to zero:
\(\frac{\mathrm{d}\sin(t)}{\mathrm{d}t}\)
Step 12
By using derivative identities \(\left(\frac{\mathrm{d}\sin(t)}{\mathrm{d}t}=\cos(t)\right)\), we get:
\(\cos(t)\)
Step 13
So, we have:
\(\frac{\mathrm{d}x(t)}{\mathrm{d}t}=\cos(t)\)
Step 14
Substitute received data into initial formula:
\(\frac{\mathrm{d}y(x)}{\mathrm{d}x}=\frac{\frac{\mathrm{d}y(t)}{\mathrm{d}t}}{\frac{\mathrm{d}x(t)}{\mathrm{d}t}}=\frac{2+\sin(t)}{\cos(t)}=\left(2+\sin(t)\right)\cdot \sec(t)\)
Install calculator on your site

Our online calculator returns step by step solution of parametric derivative of the function. This solution can be easily understand by any student, so don't waste your time and use our calculator to get step by step solution right now.

See also:

Sample of fraction decomposition step by step solution
Trigonometric formulas

Leave your comment: