Step by step partial derivative solution sample

Step by step solution of partial derivative, returned by our online calculator is given below:

Partial derivative calculator
Find partial derivative:
\(\frac{\partial^2}{\partial x \partial y}\left(x^3+y^3+2\cdot y \cdot x^2-8\cdot x \cdot y^2\right)\)


Input interpretation
Calculate partial derivative:
\(\frac{\partial^2}{\partial x \partial y}\left(x^3+y^3+2\cdot y \cdot x^2-8\cdot x \cdot y^2\right)\)
Answer:
\(4\cdot x-16\cdot y\)

Step by

Step 1
Calculate derivative of function \(x^3+y^3+2\cdot y \cdot x^2-8\cdot x \cdot y^2\) with respect to \(x\) variable:
\(\frac{\partial }{\partial y}\left(\frac{\partial }{\partial x}\left(x^3+y^3+2\cdot y \cdot x^2-8\cdot x \cdot y^2\right)\right)\)
Step 2
Differentiate the sum term by term:
\(\frac{\partial }{\partial y}\left(\frac{\partial x^3}{\partial x}+\frac{\partial y^3}{\partial x}+\frac{\partial }{\partial x}\left(2\cdot y \cdot x^2\right)-\frac{\partial }{\partial x}\left(8\cdot x \cdot y^2\right)\right)\)
Step 3
By using derivative identities \(\frac{\partial x^3}{\partial x}=3\cdot x^2\) , we get:
\(\frac{\partial }{\partial y}\left(3\cdot x^2+\frac{\partial y^3}{\partial x}+\frac{\partial }{\partial x}\left(2\cdot y \cdot x^2\right)-\frac{\partial }{\partial x}\left(8\cdot x \cdot y^2\right)\right)\)
Step 4
Derivative of constant expression \(\frac{\partial y^3}{\partial x}\) equals to zero:
\(\frac{\partial }{\partial y}\left(3\cdot x^2+\frac{\partial }{\partial x}\left(2\cdot y \cdot x^2\right)-\frac{\partial }{\partial x}\left(8\cdot x \cdot y^2\right)\right)\)
Step 5
Factor out constants:
\(\frac{\partial }{\partial y}\left(3\cdot x^2+2\cdot y \cdot \frac{\partial x^2}{\partial x}-8\cdot y^2 \cdot \frac{\partial x}{\partial x}\right)\)
Step 6
By using derivative identities \(\frac{\partial x^2}{\partial x}=2\cdot x\) , we get:
\(\frac{\partial }{\partial y}\left(3\cdot x^2+2\cdot y \cdot 2 \cdot x-8\cdot y^2 \cdot \frac{\partial x}{\partial x}\right)\)
Step 7
Derivative of \(x\) by variable \(x\) equals to \(1\):
\(\frac{\partial }{\partial y}\left(3\cdot x^2+2\cdot y \cdot 2 \cdot x-8\cdot y^2 \cdot 1\right)\)
Step 8
Differentiate the sum term by term:
\(\frac{\partial }{\partial y}\left(3\cdot x^2\right)+\frac{\partial }{\partial y}\left(4\cdot y \cdot x\right)-\frac{\partial }{\partial y}\left(8\cdot y^2\right)\)
Step 9
Derivative of constant expression \(\frac{\partial }{\partial y}\left(3\cdot x^2\right)\) equals to zero:
\(\frac{\partial }{\partial y}\left(4\cdot y \cdot x\right)-\frac{\partial }{\partial y}\left(8\cdot y^2\right)\)
Step 10
Factor out constants:
\(4\cdot x\cdot\frac{\partial y}{\partial y}-8\cdot\frac{\partial y^2}{\partial y}\)
Step 11
Derivative of \(y\) by variable \(y\) equals to \(1\):
\(4\cdot x-8\cdot\frac{\partial y^2}{\partial y}\)
Step 12
By using derivative identities \(\frac{\partial y^2}{\partial y}=2\cdot y\) , we get:
\(4\cdot x-16\cdot y\)
Install calculator on your site

Our online calculator returns partial derivative's step by step solution of the function of two variables. The solution can be easily understand, so don't lose your time and use our online calculator to get step by step solution right now.

See also:

Online integrals calculator
Parametric derivative step by step solution sample
Online derivatives calculator
Online limits calculator

Leave your comment: