Step by step simple derivative sample

Below you can find the simple derivative's step by step solution sample, returned by our online calculator.

Derivative calculator
Calculate derivative:
\(\frac{\mathrm{d}}{\mathrm{d}x}\left(x\cdot \sin^2(x)\right)\)


Input interpretation
Calculate the derivative by variable \(x\) from the expression:
\(x^2 \cdot \sin(x)\)
Answer
\(\sin^2(x)+2\cdot x \cdot \sin(x) \cdot \cos(x)\)

Step by step solution

Step 1
So, we need to calculate the derivative:
\(\frac{\mathrm{d}}{\mathrm{d}x}\left(x\cdot \sin^2(x)\right)\)
Step 2
Use product rule:
\(\frac{\mathrm{d}(u \cdot v)}{\mathrm{d}x}=\frac{\mathrm{d}u}{\mathrm{d}x}\cdot v+\frac{\mathrm{d}v}{\mathrm{d}x}\cdot u\), where \(u=x\) and \(v=\sin^2(x)\):
\(\frac{\mathrm{d}x}{\mathrm{d}x}\cdot \sin^2(x)+\frac{\mathrm{d}\left(\sin^2(x)\right)}{\mathrm{d}x}\cdot x\)
Step 3
The derivative of \(x\) by \(x\) equals to \(1\):
\(\sin^2(x)+\frac{\mathrm{d}\left(\sin^2(x)\right)}{\mathrm{d}x}\cdot x\)
Step 4
By using the chain rule, we get:
\(\frac{\mathrm{d}f(g)}{\mathrm{d}x}=\frac{\mathrm{d}f(g)}{\mathrm{d}g}\cdot \frac{\mathrm{d}g}{\mathrm{d}x}\)
In out particular case: \(f(g)=g^2\) and \(g=\sin(x)\).
Substitute these results into above formula:
\(\frac{\mathrm{d}(\sin^2(x))}{\mathrm{d}x}=\frac{\mathrm{d}g^2}{\mathrm{d}g}\cdot \frac{\mathrm{d}\sin(x)}{\mathrm{d}x}\)
Additionally, \(\frac{\mathrm{d}g^2}{\mathrm{d}g}=2\cdot g^{2-1}=2\cdot \sin^{2-1}(x)=2\cdot \sin(x)\).
Substitute the results into initial expression:
\(\sin^2(x)+2\cdot\sin(x)\cdot \frac{\mathrm{d}\sin(x)}{\mathrm{d}x}\cdot x\)
Step 5
By using derivative identities \(\left(\frac{\mathrm{d}\sin(x)}{\mathrm{d}x}=\cos(x)\right)\), we get:
\(\sin^2(x)+2\cdot\sin(x)\cdot \cos(x) \cdot x\)
Install calculator on your site

Our online calculator finds step by step solution of simple derivative of the function. The solution is straight and clean, so you can easily understand it. Don't lose your time, use our online calculator and get step by step solution of your derivative right now.

See also:

Implicit derivative calculator
Partial derivative calculator

Leave your comment: