Одним из способов решения системы линейных алгебраических уравнений (СЛАУ) является метод Крамера . Предположим, нам дана СЛАУ вида:
Требуется её решить, т.е. найти такие значения переменных x1, x2, x3 чтобы при подстановке их в исходную СЛАУ, последняя обращалась в верное тождество. Чтобы проиллюстрировать метод Крамера, запишем исходную СЛАУ в матричной форме:
Первым шагом метода Крамера, является нахождение определителя матрицы СЛАУ:
Если полученный определитель отличен от нуля, тогда исходная СЛАУ имеет единственное решение, которое может быть найдено методом Крамера. Если полученный определитель равен нулю, тогда исходная СЛАУ может не иметь решений или иметь бесконечное множество решений которые не могут быть найдены методом Крамера.
Предположим, что полученный определитель не равен нулю:
тогда, по методу Крамера, решения находятся по формулам:
причем ∆x, ∆y и ∆z - определители полученные из определителя ∆ путем замены соответствующего столбца на вектор свободных коэффициентов. Например, определитель ∆x получается из определителя ∆ путем замены 1-ого столбца на вектор свободных коэффициентов:
аналогичным образом нужно сформировать определители ∆y и ∆z. Стоит отметить, что метод Крамера применим к СЛАУ в которых число уравнений равно числу неизвестных.
Данный онлайн калькулятор решает СЛАУ методом Крамера с описанием пошагового хода решения на русском языке. Коэффициенты СЛАУ могут быть не только числами или дробями, но также и параметрами. Для работы калькулятора необходимо ввести уравнения и выбрать переменные СЛАУ, которые необходимо найти.