Онлайн калькулятор осуществляет деление многочленов двумя различными способами: делением в столбик и методом неопределенных коэффициентов. Для работы калькулятора введите исходные данные своей задачи.
Метод деления в столбик рассмотрим на следующем примере. Пусть нам требуется разделить многочлен
на многочлен
Сразу необходимо отметить, что:
деление многочленов возможно только в том случае, если степень многочлена делимого больше или равна степени многочлена делителя.
В нашем случае указанное условие выполняется т.к. степень многочлена делимого равна трём, а степень многочлена делителя - двум.
Чтобы осуществить деление многочленов, запишем многочлен делимое слева от вертикальной черты, а многочлен делитель - справа:
Далее, разделим слагаемое со старшей степенью многочлена делителя на слагаемое со старшей степенью многочлена делимого :
Запишем полученный результат (частное от деления) справа под чертой:
Теперь, умножаем на многочлен делитель , получаем:
Записываем полученный результат слева под многочленом делимым:
Вычитаем из многочлена делимого полученный результат:
Записываем полученный многочлен в столбик:
Далее, процедура повторяется, т.е. мы делим слагаемое со старшей степенью полученного многочлена ( ) на слагаемое со старшей степенью многочлена делителя ( ), и т.д., в результате получаем:
Процесс деления останавливается, когда степень многочлена остатка меньше степени многочлена делителя. Это условие описано выше.
Записываем полученный результат следующим образом. Сначала записываем частное (многочлен справа под чертой) равное , затем прибавляем к нему дробь, числителем которой является многочлен остаток равный (тот многочлен, который остался после всех вычитаний слева снизу в столбике) а знаменателем - многочлен делитель . В результате получаем:
Таким образом:
Другим способом деления многочленов является метод неопределенных коэффициентов. Рассмотрим его на том же самом примере. В общем случае, результат деления многочленов можно записать в следующем виде:
где - многочлен частное, степень которого равна разности степеней многочлена делимого и многочлена делителя, т.е. в нашем случае - единице. - многочлен остаток, степень которого не больше степени многочлена делителя, т.е. в нашем случае - не больше единице.
Теперь, запишем многочлен в общем виде:
- неизвестные пока коэффициенты.
Тоже самое для многочлена :
- неизвестные пока коэффициенты.
Таким образом, получаем следующее равенство:
Итак, нам нужно определить неизвестные коэффициенты и . Для этого домножаем обе части приведенного выше равенства на знаменатель - многочлен делитель , получаем:
Раскрываем скобки, приводим подобные слагаемые:
Для того, чтобы сохранить верное равенство, нам нужно приравнять коэффициенты при одинаковых степенях . В результате получаем следующую систему линейных уравнений:
В результате решения этой системы, получаем следующие значения коэффициентов:
Подставляем значения полученных коэффициентов и исходное равенство:
Как видно, данный результат полностью совпадает с результатом, полученным методом деления в столбик.