Несобственный интеграл онлайн

Определённый интеграл называется несобственным, если выполняется хотя бы одно из двух условий:

Один (или оба) из пределов интегрирования равен или . В этом случае, интеграл называется несобственным интегралом первого рода, например: .

В любой точке на отрезке интегрирования, подинтегральная функция терпит бесконечный разрыв. В этом случае, интеграл называется несобственным интегралом второго рода, например: в точке .

Рассмотрим в качестве примера несобственный интеграл первого рода . График подинтегральной функции на отрезке интегрирования имеет вид:

график функции x^3*e^(-x^2) на отрезке [0;+oo]

Геометрически, данный несобственный интеграл равен площади под графиком функции на отрезке . Рассматриваемый интеграл является сходящимся, потому что указанная площадь равна - конечному числу. Однако, несобственные интегралы бывают и расходящимися, например:

Алгоритм вычисления несобственного интеграла первого рода выглядит следующим образом:

Сначала мы заменяем бесконечный предел на некоторый параметр, например и получаем определенный интеграл. Этот интеграл мы вычисляем обычным образом: берем неопределенный интеграл и далее используем формулу Ньютона-Лейбница. На завершающем этапе, мы вычисляем предел при и, если, данный предел существует и конечен, тогда исходный несобственный интеграл является сходящимся, а в противном случае - расходящимся.

Алгоритм вычисления несобственного интеграла второго рода заключается в разбивке интервала интегрирования на отрезки в каждом из которых подинтегральная функция является непрерывной (разрывы допускаются только на концах отрезка). Далее, вычисляются полученные определенные интегралы, а при подстановке значений в формулу Ньютона-Лейбница вычисляются соответствующие пределы. И если все эти пределы существуют и конечны, тогда, как и раньше, интеграл является сходящимся, а в противном случае - расходящимся. Приведем пример:

Наш онлайн калькулятор, построенный на основе системы Wolfram Alpha способен вычислить очень многие типы несобственных интегралов. При этом, если интеграл расходится, калькулятор выдает сообщение: integral does not converge.

Калькулятор несобственных интегралов
ex2dx


Установить калькулятор на свой сайт

Уважаемые пользователи!

Мы развиваем данный сайт с 2011 года, постоянно совершенствуем наши калькуляторы, и нам очень хотелось бы сохранить данный проект. В настоящее время в России реклама Google Adsense больше не работает, а никаких других источников финансирования у нас толком нет. Вводить платную подписку за подробные решения нам не хотелось бы. Мы просим Вас о помощи. Если Вам нравится наш сайт и он помог Вам в освоении математики, мы убедительно просим поддержать нас, будем рады любой сумме.

Другие полезные разделы:

Разложение в ряд Фурье онлайн
Калькулятор обратного преобразования Лапласа

Оставить свой комментарий: